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Abstract— In this paper we introduced a novel Multi-Robot
Social Navigation system that incorporates cooperative percep-
tion to tackle the challenges posed by visual occlusions and
incomplete observations in environments with both static and
dynamic obstacles. By employing a multi-agent reinforcement
learning (MARL) strategy, our approach enhances predictive
capabilities and situational awareness, enabling robots to an-
ticipate and avoid potential collisions in the complex dynamic
environments more effectively. Cooperative perception facili-
tates the exchange of sensory data among robots, significantly
refining the accuracy of perception. This improvement in data
fidelity enhances the performance of downstream tasks such as
occupancy grid map(OGM) prediction and navigation.

I. INTRODUCTION

Social navigation involves robots operating in environ-
ments with both static obstacles, such as walls, and dy-
namic obstacles, like pedestrians or other moving entities.
Although recent advances have enabled single-robot navi-
gation to achieve promising results, significant challenges
remain. Single-robot systems are often hindered by occlu-
sions and limited local observations, making it difficult to
consistently identify globally optimal navigation paths. For
example, a robot may become stuck in a confined area
due to surrounding static obstacles, or it may fail to detect
a pedestrian hidden behind a wall when turning a corner.
These limitations can result in ineffective planning or unsafe
navigation choices.

In contrast, in a multi-robot connected setting, robots can
exchange information to enhance their situational awareness.
By sharing observations, such as a nearby robot detecting a
pedestrian beyond an occluded area, the robots can augment
their perception and make more informed decisions. While
multi-agent cooperative perception techniques have been
extensively studied to address these perception challenges,
their application to downstream decision-making in social
navigation remains underexplored.

One of the most widely used representations for robot
navigation is the occupancy grid map (OGM), which pro-
vides a structured model of the environment by assigning
occupancy probabilities to each grid cell. While OGMs are
effective, most research has focused either on single-robot
OGM prediction, where the goal is to predict the future states
of dynamic environments, or on cooperative perception,
which aims to detect distant or occluded objects by sharing
raw sensor data between autonomous agents. However, the
concept of cooperative OGM prediction remains underex-
plored. Cooperative OGM prediction obstacles. By predicting
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Fig. 1. A comparison between the multi-robot navigation with and without
cooperative prediction. (a) Traditional navigation conducts perception based
on a single robot’s raw sensor data and fails to detect dynamic obstacles. (b)
The proposed navigation involves multiple cooperative robots, which share
information to enhance cooperative prediction and avoid future collisions.

the future state of the environment, robots can anticipate
potential collisions with moving obstacles, such as humans,
and take preemptive actions to avoid them. In order to enable
effective multi-robot cooperation, we model the environment
in social navigation as a decentralized partially observable
semi-Markov decision process (Dec-POSMDP), and adopt
a multi-agent reinforcement learning (MARL) algorithm
to learn joint policies and optimize cooperative navigation
behaviors. By integrating MARL with cooperative OGMs
prediction, robots can not only leverage shared perception
information but also refine their long-term strategies based on
anticipated future states of the environment. The combination
of real-time data sharing and predictive modeling allows for
more intelligent and adaptive behavior, particularly in envi-
ronments with partial observability and dynamic obstacles.

To the best of our knowledge, this is the first work in
multi-robot navigation that integrates cooperative occupancy
prediction to overcome the limitations of single-robot sys-
tems. Our approach enhances perception through different
cooperative settings for multiple robots and enables cooper-
ative prediction using uncertainty-aware OGMs predictors.
By augmenting the partially observable environment with
future OGMs generated from cooperative predictions, robots
can share observations and anticipate future environmental
states more effectively. This leads to improved navigation
performance in complex, dynamic settings.

The main contributions of this work are as follows:
• We introduce a novel framework for multi-robot social

navigation that integrates cooperative occupancy predic-
tion into downstream decision-making, addressing the
challenges in multi-robot navigation.

• We develop cooperative OGM predictors under different
cooperation settings, enhancing each robot’s ability to



anticipate future environmental states and improving
navigation performance.

• Our approach achieves state-of-the-art (SOTA) perfor-
mance in both occupancy prediction metrics (SSIM,
WMSE) and multi-agent navigation, as demonstrated by
higher success rates and lower collision rates compared
to several baseline methods.

II. RELATED WORK

A. Multi-Robot Social Navigation

As the development of mobile robotics and autonomous
driving advances, physical artificial intelligence agents are
required to share limited spaces with humans and adhere
to social norms [1] [2]. Typically, social navigation is de-
fined as a Partially Observable Markov Decision Problem
(POMDP), where agents cannot access the ground truth of
the environmental state but instead make decisions based on
local observations. Therefore, the key lies in the modeling of
the incomplete observations prevalent in real-world environ-
ments [3]. To address highly complex and dynamic crowd
environments, using reinforcement learning for real-time
decision-making has become a popular approach [4]. A series
of previous works primarily focused on the trajectory infor-
mation of dynamic obstacles. They ideally models obstacles
as tuples of position and radius, optimistically assuming that
the robot can acquire information about all pedestrians within
a certain range around it. This series of studies achieves well
performance in simulated environments by modeling human
intentions and predicting human behaviors [5] [6] [7] [8].
However, trajectory based navigation faces challenges when
applied to the real world, primarily due to the diversity and
variability of obstacle shapes in reality.

B. Occupancy Grid Map

Another series of work use occupancy grid maps (OGMs)
as observations to model dynamic crowd environments [9]
[10], which are similar to the methods used in the au-
tonomous driving. OGMs model obstacles as occupations
on each map grid. Although OGMs consume more resources
compared to trajectory-based information, OGMs offer supe-
rior representational capabilities and can be easily extracted
from raw Lidar data. Some variants of OGMs can carry
additional information. For example, Dynamic Occupancy
Grid Maps (DOGMs) annotate each grid with kinematic
information, and Semantic Occupancy Grid Maps (SOGMs)
incorporate semantic segmentation information, adding se-
mantic labels to each pixel. This enhancement facilitates the
execution of downstream tasks.

C. Cooperative Perception and Prediction

Cooperative perception has become crucial for overcoming
the limitations of single-agent systems, particularly in envi-
ronments with occlusions or restricted fields of view. Mul-
tiple agents share sensor data to construct a more complete
view of the environment, improving navigation performance
in crowded or occluded settings. Early fusion approaches
share raw sensor data (e.g., LiDAR or RGB camera data),

providing detailed information but requiring high bandwidth,
which limits real-time use. On the other hand, late fusion
techniques transmit only the processed results, reducing
bandwidth requirements but often losing valuable contextual
information. Intermediate fusion [11] strikes a balance be-
tween these two approaches. In this method, robots process
raw sensor data locally, extracting intermediate features,
which are then shared with other agents. By combining these
features, each robot improves its perception and prediction
capabilities while minimizing the need for excessive data
transmission. This approach enables agents to collaboratively
build a more accurate and comprehensive understanding of
their environment, enhancing tasks such as navigation, future
state prediction, and collision avoidance.

III. PRELIMINARIES

A. Perception

Considering the limited computational resources of mobile
robots and the need for real-time operations, the combination
of RGB cameras and 2D LIDAR is a common config-
uration for the perception module of mobile robots [2].
Specifically, the 2D LIDAR provides 360-degree obstacle
distance information around the robot by scanning, while
the camera, empowered by computer vision techniques, can
provide semantic or kinematic information about the obsta-
cles within the field of view. In our work, we employ this
configuration to ensure that robots can extract sufficient and
useful environmental information with a practically feasible
hardware setup.

B. Multi-Agent Reinforcement Learning

The multi-agent version of the Proximal Policy Optimiza-
tion algorithm (MA-PPO) is widely regarded as an effective
method for multi-agent reinforcement learning [12]. Unlike
centralized algorithms, which require agents to transmit ob-
servations to a central server for task assignment, distributed
algorithms such as MA-PPO rely on local information
for decision-making. This decentralized approach reduces
communication latency and improves both the safety and
feasibility of navigation in dynamic environments.

IV. METHODS

In this section, we briefly overview the approach of our
multi-agent reinforcement learning, with a primary focus
on the observation space, cooperative occupancy perception,
action space, and the configuration of the reward function.

A. Problem Formulation

Formally, the multi-robot social navigation problem could
be represented by Dec-POMDP problem defined by the tuple
⟨n,N, S,A,Ω, O, P,R, γ, ⟩, where n / N denotes the he
number of Robots / Agents. S represents the state space of
Agents, and st = [s1t , s

2
t , . . . , s

N
t ] ∈ SN represents the joint

state of all Agents in environment at timestep t.
A is the shared action space for each agents i in environ-

ment. Ω represents the observation space of all robots, and
the joint observation ωt = [ω1

t , ω
2
t , . . . , ω

n
t ] ∈ Ωn.



O : SN −→ Ωn specifies how robots perceive Observations
from environment, influenced by the configuration of sen-
sors and the collaborative perception/prediction methods. It
should be noted that we use ω̂i

t as the original observation
obtained by the i-th robot at time step t directly from the
environment. In contrast, ωi

t denotes the final observation
for the i-th robot at time step t, which is derived after
processing and integrating shared observations from other
robots within the cooperative network in this timestep .

P (si | sj , at) denotes the transition probability from sj to
si given the joint action at ∈ AN for all N agents.
R : SN ×AN → R denotes the joint reward function, and

γ is the discount factor.

B. MARL
1) Training Algorithm: Robots use a policy

πθ(a
i
t | ωi

t, H
i
t)

with parameters θ to produce an action ait from the lo-
cal observation ωi

t and hidden state Hi
t . All robots share

the same policy and jointly optimize the reward J(θ) =
Eat,st [

∑
t γ

tR(st, at)].

Algorithm 1 training algorithm
π ← Initialize parameters; step← 0
while step ≤ total step do

s0 = [s10, s
1
0, . . . , s

N
0 ]← Reset Environment

ω0 = O(s0)← Initial observations
H0 ← Initial hidden states, Rollout← []
for t = 0 to T do

for i = 0 to n do
if Robot i is activated then

sample ait, v
i
t from πθ(ω

i
t, H

i
t), update Hi

t+1

else
ait, v

i
t ← nothing

get human actions, update Env st+1 ∼ P (st, at)
compute reward rt = R(st, at)
ωt+1 = O(st+1)← get fused observation
append (ωt, at, vt, Ht, rt) into Rollout
for i = 0 to n do

if Robot i collides or reaches goal then
Deactivate Robot i

if all Robots are deactivated then
Reset Environment, observations, hidden states

Use Rollout update θ parameters on MAPPO loss
step = step + 1

Specifically, in each step, each robots independently get
their original observations, then share observation informa-
tion with nearby robots in their local area, and integrate
these to form a more precise and complete local observation.
Subsequently, using these observations, each robot locally
sample actions based on the policy and evaluates their value,
incorporating this information into a global rollout. Finally,
the loss is computed globally and the policy is optimized
based on this aggregated information.

2) Observation Space: To align with the real-world sen-
sors, we utilize an observation space ωt = [It,ot, dt]
comprising three preprocessed components. The first It =
[px, py, gx, gy, vx, vy, r, θ] contains the robot’s state informa-
tion.

ot represents a semantic occupancy map defined in the
local reference frame, stored as a two-channel matrix with
the shape [2,map size,map size]. The first channel indicates
the occupancy rate at the current location, while the second
channel provides semantic segmentation information, classi-
fying the space into five categories: unknown, open space,
pedestrian, obstacle, and robots.

dt includes the state information of other robots within the
vicinity, based on the assumption that robots can communi-
cate and share information. This information, more direct
than that from an ordinary grid map (OGM), is crucial for
collision avoidance among robots.

C. Cooperative Occupancy Grid Map Prediction

As in Fig.2, the cooperative OGM prediction in the inter-
mediate fusion setting consists of three parts, where multi-
robots cooperatively perceive the environment based on
LiDAR data and extra the spatiotemporal features with Con-
vLSTM. Then, the cooperative predictor fuses the dynamic
and static features and provides the final probabilistic future
prediction for navigation strategy learning. The prediction
problem for current time t given the past τ frame can be
formulated as:

pθ(ot+1 | y1:n
t−τ :t, I

1:n
t−τ :t) (1)

where θ are the model parameters. The state information of
robot i at time t from observation space is denoted by I1:nt .
The lidar measurements for robot i at time t, comprising
range rit and bearing bit, are represented as yi

t = [rit b
i
t]
T , and

the predicted OGM for next step t+1 is denoted as oi
t+1. The

goal is to find the optimal θ that maximizes (1), allowing the
robots to predict the future state of the environment through
cooperation accurately.
Static / Dynamic Objects Map Conversion. In dynamic
environments containing both static and dynamic obstacles,
multiple robots equipped with LiDAR sensors cooperatively
sense their surroundings by sharing occupancy grid maps
(OGMs) or intermediate features. Each robot estimates its
pose and velocity using odometry or localization algorithms,
and generates a local OGM based on LiDAR measurements
and its own states. Both dynamic object maps and static
environment maps are considered for prediction as [13].
The function c(·) represents the conversion process that
transforms LiDAR measurements into binary dynamic maps
within the robot’s local coordinate frame. To maintain con-
sistency in the robot’s sequence of OGM states, the locally
observed OGMs ot−τ are transformed into the robot’s local
coordinate frame at the current time step t. This ensures that
the robot’s environmental perception remains aligned with
its real-time position and orientation.
Early Fusion. Each robot shares its local dynamic and static
OGMs with surrounding robots within a defined communi-
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Fig. 2. Cooperative prediction (intermediate fusion) overall architecture

cation range. The ego robot then transforms the received
OGMs into its local coordinate frame and fuses them with
its own OGMs to create a collective understanding of the
environment. The fused dynamic OGM is denoted as ofused

t−τ :t ,
and the fused static OGM as mfused

t . Next, a ConvLSTM-
based model h(·) processes the history of the fused dynamic
OGM sequences to obtain spatiotemporal features ffusedt+1 .
These spatiotemporal features, along with the fused static
OGM, are used to predict the future occupancy states:

ffusedt+1 = h(ofused
t−τ :t ), (2)

pθ(ot+1 | ffusedt+1 ,mfused
t ) (3)

Intermediate Fusion. In intermediate fusion, each robot i
processes its local dynamic OGM oi

t−τ :t through h(·), to
extract intermediate features f it+1 from its historical states.
These features are then shared and spatially aligned across
robots. The ego robot aggregates both its features and the
transformed features from surrounding robots to create a
fused feature map ffusedt+1 , which is used as input for the
prediction model along with the fused static map mfused

t as
in previous early fusion setting (3).
Cooperative Predictors. Once the fused dynamic feature,
ffusedt+1 , and fused static map mfused

t are obtained, we use
a Variational Autoencoder (VAE) to model and predict a
distribution over the future occupancy grid map (OGM).
The VAE consists of an inference network (encoder) and a
generative network (decoder). The encoder first concatenates
the dynamic and static features and then compresses the
features into a latent representation z. The decoder generates
the predicted future OGM ot+1 from the latent representation
z:

z = Encϕ(f
fused
t+1 ), ot+1 = Decθ(z), (4)

where Encϕ represents the encoder parameterized by ϕ, and
Decθ represents the decoder parameterized by θ. The VAE
introduces probabilistic components that capture the inherent
uncertainty of the future states. This cooperative perception

approach, augmented by uncertainty-aware prediction, allows
the system to collaboratively predict future states across
multiple robots. Moreover, the model estimates future occu-
pancy states in an autoregressive manner, further enhancing
prediction accuracy over time by feeding the predicted state
back into the model for subsequent time steps.

D. Policy Network

The input to the network consists of three compo-
nents: the robot state, predicted stochastic occupancy grid
maps (SOGMs), and detected robot states. The robot
state includes positional and velocity information such as
(Px, Py, gx, gy, Vx, Vy, θ). The predicted SOGMs are gen-
erated from the cooperative perception prediction module
introduced in the previous section and can be devide to
dynamic obstacle maps and static maps.The dynamic maps
capture the movement of surrounding objects, while the static
map contains environmental features such as obstacles.

After feature extraction, each input features are con-
catenated and passed through a ResNet block for feature
fusion. The temporal information is then integrated using
a Gated Recurrent Unit (GRU), providing a time-dependent
representation of the input.

The final fused features are used as input to the Actor-
Critic module. The Actor head outputs the action features
used to sample actions, while the Critic network’s output is
used to compute the value of the current state.

E. Reward Function

The total reward function Rtotal for all robots is defined as
the sum of one-time rewards and ongoing rewards:

R(sit, a
i
t) =


rg if reach goal,
rc if collision,
rdanger if too close to obstacles,
rpot otherwise.
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Fig. 3. The architecture of the deep reinforcement learning model. The
robot state information is processed through two fully connected (FC)
layers, each outputting a 64-d feature vector. The dynamic predicted maps
first passes through a 1×1 convolution layer to integrate temporal features.
Then further encoded by CNN into a 256-d feature.The static map is
also encoded via a CNN network to a 256-d feature. The detected robot
information is treated as sequential data, where robots will be sorted by
their relative distances to the robot, and then passed through a recurrent
neural network (RNN), followed by an FC layer, encoded to a 64-d feature.
Residual block contains two layers, with the widths of 1024 and 512
dimensions. The Gated Recurrent Unit (GRU) has a hidden layer of 512
dimensions. Actor and Critic networks consist of two 128-d FC layers, and
finally output the action and value.

where rg = 20. The collision reward rc depends on the
type of object collided with. We consider a collision with a
pedestrian to be a more severe outcome, hence:

rc =

{
−20 if the collision object is a pedestrian,
−10 otherwise.

The danger reward rdanger represents a penalty applied when
the minimum distance dmin between the robot and any other
object is less than 3 meters. It is given by:

rdanger =
0.3

dmin + 0.03

Finally, a potential function rpot has been added to guide the
robot towards its target. Specifically, rpot is calculated as the
change in the distance to the target multiplied by a scaling
factor f :

rpot = ∆d · f

where ∆d is the change in distance to the target. The
scaling factor f typically equals 3. However, when there
are obstacles obstructing the path between the robot and the
target, f is reduced to 1.5. This reduction in f is intended
to encourage the robot to navigate around obstacles to reach
the target.

V. EXPERIMENTS

In this section, we introduce our experimental setup and
results, including navigation experiments in a simulator en-
vironment, data collection, and real-world experiments.

A. Simulation Environment and Dataset

We built a 20m * 20m square on a 2D simulator, which
includes multiple robots, pedestrians, and simple static ob-
stacles. Static obstacles are stored in the form of a bitmap,
and several simple convex polygons are randomly gener-
ated using a randomized BFS algorithm. The movement of
pedestrians follows the topology guided ORCA method [14],
which can effectively simulate and handle crowd movements
in environments with static obstacles. The robot is set to
be invisible to pedestrians, assuming that the robot is re-
sponsible for all collision avoidance obligations. In terms of
perception, we simulated 2D lidar data, and the robot was
able to obtain semantic information of obstacles ahead within
a FOV of π

2 , in order to simulate the role of cameras and
visual models.

In terms of kinematics, we tested two different movements.
One assumes that the robot can adjust its speed arbitrarily,
with a maximum speed of 1m/s, which is the same as that of
a human; In addition, we also tested a more realistic motion
model, referring to a two wheeled robot with differential
motion control, limiting the maximum speed to 0.5m/s
and the linear velocity to decrease with increasing angular
velocity, with a maximum angular velocity not exceeding
π
2 /s.

We collected a dataset using our simulator to train and
evaluate our cooperative OGM predictors. We first trained
a policy using ground truth OGM as observation. Then,
we employed the pretrained policy to control robots and
stored LIDAR data and position sequences of each robot.
During data collection, Our simulator includes 3 robots, 3
pedestrians and 10 different static obstacle maps. We used
data from 576 episodes to train and 64 to evaluate our
cooperative OGM predictors, in which all robots successfully
reached goals.

B. Evaluation Metrics and Baselines

Cooperative Prediction Metrics. We evaluate our coopera-
tive OGM predictors on the following two metrics: weighted
mean square error (WMSE), and structural similarity index
measure (SSIM). Specifically, we define the predicted OGM
as ō and the ground truth OGM as o. The WMSE defines
as:

WMSE =

∑m
i=1 wi (ōi − oi)

2∑N
i=1 wi

, (5)

where m is the number of cells in the OGM, and wi is
the weight for the cell i in the OGM, calculated by the
median frequency balancing method [15]. This metric is
used to evaluate the weighted absolute errors (balancing
the imbalance in the percentage of occupied and free cells)
between the predicted OGM and its corresponding ground
truth OGM, describing the predicted quality of a single OGM
cell. The SSIM is defined as:

SSIM =
(2µōµo + C1) (2δōo + C2)

(µ2
ō + µ2

o + C1) (δ2ō + δ2o + C2)
, (6)

where µ(·) and δ(·) denote the mean and variance/covariance,
respectively, and C(·) denotes constant parameters to avoid



TABLE I
THE COMPARISONS OF OCCUPANCY GRID MAP PREDICTION.

Method Cooperation Setting

Prediction
Horizon
(steps)

SSIM ↑ WMSE ↓
IoU ↑

Bandwidth
(M/s) ↓

FPS

no delay 100ms
delay

no
delay

100ms
delay

SOGMP++ [13] No Cooperation 1 0.48 - 0.29 -
4 0.45 - 0.30 -

Ours

Early Fusion 1 0.80 0.69 0.10 0.18 199.2
4 0.76 0.67 0.12 0.20 0.34 112.1

Intermediate Fusion 1 0.75 0.69 0.13 0.19 82.3
4 0.70 0.66 0.18 0.21 0.25 30.4

Late Fusion 1 0.69 0.61 0.18 0.23
4 0.65 0.58 0.21 0.20

instability. We use C1 = 1e−4 and C2 = 9e−4. This
metric is used to evaluate the structural similarity between
the predicted OGM and its corresponding ground truth OGM,
describing the predicted quality of the scene geometry.
Navigation Metrics. We follow the standard evaluation
metrics, including both navigation and social metrics. The
navigation metrics measure the quality of the navigation and
include the success rate (SR), collision rate (CR), timeout
rate (TR), average navigation time (NT) in seconds, and path
length (PL) in meters for successful episodes.

Additionally, we aim to quantify the smoothness of the
paths. To achieve this, we introduce two new metrics: the
average acceleration (AA), which is defined as the average
velocity changes between each step, and the sharp turn rate
(STR), which is defined as the proportion of time during
which the angular velocity exceeds 80% of the maximum
allowable angular velocity.
Cooperative Prediction Baselines. To demonstrate the ef-
fectiveness of incorporating cooperative perception, we con-
duct ablation studies on various model components and
compare our method with SOGMP++ [13], an effective
OGM stochastic predictor that leverages motion prediction
of surrounding dynamic objects and the robot itself. We
compare perception performance based on the absolute error,
structural similarity, and prediction time range.
Navigation Baselines. For navigation, we adopt ORCA [14]
and DRL-VO [9] as our baseline algorithms. ORCA is
a widely used non-learning collision avoidance strategy,
while DRL-VO employs an occupancy grid map augmented
with velocity information for deep reinforcement learning-
based single-robot navigation. We utilize the network and
reward function proposed by DRL-VO, training it within our
environment using the Proximal Policy Optimization (PPO)
algorithm. During testing, the single-robot policy obtained
from DRL-VO training is applied individually to each robot
in a multi-robot environment. We evaluate the performance
data in scenarios both with and without cooperative percep-
tion.

C. Quantitative and Qualitative Results
Cooperative Prediction.

Social Navigation. The experimental results are presented
in Table II. The ORCA algorithm shows significantly higher
collision rate (CR) and timeout rate (TR) in environments
with both static obstacles and dynamic targets. This is
primarily because the ORCA algorithm assumes that both
parties involved in a potential collision share equal responsi-
bility in avoiding each other. However, this assumption does
not hold for static obstacles, leading to numerous episodes
where the robot either collides with a building or becomes
trapped in corners by human agents, ultimately resulting in
a timeout.

Additionally, in the ablation study of the cooperative
perception module, the success rate (SR) of policies using
cooperative perception as observations outperforms those
using only local independent perception, both in our method
and the baseline methods. This indicates that cooperative
perception improves the overall navigation success rate.

It can also be observed that policies using cooperative
perception tend to have a higher path length (PL), but a
lower average acceleration and sharp turn rate. This can be
interpreted as the cooperative perception module enabling
robots to detect occluded potential obstacles in advance,
allowing them to reroute or decelerate earlier, thus navigating
more smoothly through crowds. In contrast, robots relying
solely on local observations must resort to abrupt stops or
sharp turns to avoid obstacles that suddenly appear in their
field of view.
Figure 4 presents a representative case comparing the per-

formance of robots with and without cooperative perception
(CP). The first row illustrates how cooperative perception
allows the robot to gracefully avoid potential collisions with
pedestrians, while the second row shows the performance of
a robot without CP in the same scenario.

In the first image of the first row, Robot 1, through
cooperative perception with Robot 2, detects the approaching
pedestrian (inside the green circle) despite the LIDAR signal
being blocked by an obstacle between them. This early
detection prompts Robot 1 to decelerate, as shown in the
second image, thereby avoiding an impending collision. After
the pedestrian passes through the narrow passage, Robot 1



TABLE II
NAVIGATION PERFORMANCE(TODO: MID FUSION

Methods Perception SR↑ CR↓ TR↓ NT↓ PL↓ AA↓ STR↓

ORCA [14]
No cooperation

43.34% 30.59% 26.06% 45.72 19.46 0.21 31.35%
DRL-VO 70.44% 35.26% 0.91% 39.16 19.73 0.13 12.51%

Ours 69.53% 30.42% 1.04% 36.29 22.86 0.09 14.60%

DRL-VO Early Fusion 75.15% 21.77% 3.08% 40.06 21.84 0.09 9.75%
Ours 80.22% 18.05% 1.73% 38.30 23.11 0.05 8.60%

DRL-VO Intermediate FusionOurs

DRL-VO Late FusionOurs

Fig. 4. Illustration of a representative case comparing robots with and
without cooperative perception (CP). The solid red circle represents the
robot, with the red arrow indicating its velocity. Hollow blue circles
represent pedestrians, while large grey areas represent static obstacles. The
black and blue grids within the dashed boxes represent the Occupancy Grid
Map (OGM) perceived by Robot 1. The first row shows the robot with CP
gracefully avoiding collisions by decelerating early, while the second row
shows the robot without CP failing to react in time, leading to a collision.

accelerates to continue its path.
In contrast, the second row demonstrates the behavior of

a robot without CP. Without early warning, the robot fails
to decelerate in advance and only reacts when the pedestrian
fully enters its field of view. At this point, the robot makes
an abrupt stop, but it is still unable to avoid the collision.

VI. CONCLUSIONS

In conclusion, our research demonstrates the advantages
of integrating cooperative perception into multi-robot nav-
igation systems for improved situational awareness and
decision-making in complex environments, enabling robots
to anticipate and avoid potential collisions more effectively.

However, our current study is limited to tests within a 2D
simulator using simplistic sensor configurations and lacks
an in-depth analysis of intermediate features like occupancy
grid maps (OGMs). Future work will explore the fusion
of multiple sensor modalities and aim to develop end-to-
end trained models that do not rely on manually specified
intermediate features. This approach is expected to further
enhance the robustness and applicability of autonomous
navigation systems in more dynamically challenging envi-
ronments.
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