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Abstract

Generating free-viewpoint videos of dynamic humans is001
a challenging yet crucial problem with numerous applica-002
tions in immersive telepresence, film production, and sports003
analytics. Existing methods either require dense camera004
setups or struggle with high computation costs and tem-005
poral incoherence. In this paper, we present FlyHuman, a006
novel approach that achieves real-time, temporal consistent007
free-viewpoint rendering of dynamic humans from as few as008
three input views, and even from a single view. We model009
the dynamic human body using deformable 3D Gaussian010
Splatting, enabling efficient rendering. As the videos stream011
in, we track the motion and update the color of each 3D012
Gaussian frame-by-frame. To ensure temporally consistent013
geometry, we propose a graph-based deformation method014
that deforms the 3D Gaussians on-the-fly. For accurate015
appearance modeling with insufficient observations from016
sparse views, we introduce a spatial-temporal feature ag-017
gregation (STFA) module that gradually refines the features018
of the Gaussians. Extensive experiments demonstrate that019
our approach outperforms previous work in terms of ren-020
dering quality, temporal consistency, and efficiency. Code021
and models will be publicly available.022

1. Introduction023

Generating free-viewpoint videos of dynamic humans has024
a wide range of applications, including immersive telepres-025
ence, film production, and sports analytics. These applica-026
tions necessitate both real-time efficiency and photorealis-027
tic rendering to ensure a seamless and engaging experience.028
Traditional methods [8, 34, 52] achieved this goal by em-029
ploying dense camera settings to record the subjects, which,030
however, limits their widespread adoption among end-users031
due to the high cost. Given only sparse-view videos, as the032
recorded information is quite insufficient, rendering high-033
fidelity images of dynamic humans in real-time remains a034
significant challenge.035

In recent years, Neural Radiance Fields (NeRF) [33] 036
have achieved significant success in novel view synthesis. 037
Numerous works [37, 38, 51] have integrated NeRF with 038
parametric human models [29] to enable novel view syn- 039
thesis of dynamic humans. However, these approaches 040
are computationally expensive due to the time-consuming 041
ray marching inherent in NeRF. More recently, 3D Gaus- 042
sian Splatting (3DGS) [19] has demonstrated substantial ad- 043
vances in training and rendering efficiency, and has been 044
utilized for rendering of dynamic humans [14, 16, 22, 26, 045
36, 40, 41, 50]. Nevertheless, these methods still require 046
per-scene optimization, making them unsuitable for appli- 047
cations such as real-time telepresence. On the other hand, 048
some methods [27, 31, 35, 61] have proposed using a gen- 049
eralizable feed-forward approach to achieve rendering of 050
unseen human bodies. However, for continuous dynamic 051
videos, these methods do not consider any temporal infor- 052
mation, instead rendering the subject frame-by-frame. 053

In this paper, we introduce FlyHuman, a novel method 054
for real-time rendering of dynamic humans from sparse 055
viewpoints, enabling the generation of free-viewpoint 056
videos from as few as three input views, and even monocu- 057
lar video.To achieve efficient rendering, we employ 3DGS 058
as the representation of the dynamic human body. The first 059
challenge is to maintain a dynamic 3D body geometry with 060
consistency over time. To handle this problem, we con- 061
struct the 3D Gaussians in the canonical space and then 062
drive them to each observation space. The dynamic body 063
motion is decomposed into rigid bone transformations and 064
non-rigid deformation driven by a deformation graph. The 065
deformation graph is optimized frame-by-frame to align the 066
reconstructed geometry with input images while ensuring a 067
temporally consistent geometry. 068

Given the tracked geometry, we then estimate the color 069
of each Gaussian. Similar to existing image-based render- 070
ing methods [6, 47, 57], we compute the color of each Gaus- 071
sian based on the pixel-aligned features. However, the in- 072
sufficient observation from sparse viewpoints presents an- 073
other challenge in estimating the appearance of occluded 074
regions. We propose a spatial-temporal feature aggrega- 075
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tion (STFA) module to enhance the input image features076
with spatial and temporal information. Specifically, we first077
project each 3D Gaussian onto 2D input image planes to078
obtain the image features of visible regions. Then, we use079
a graph convolutional network (GCN) to aggregate the im-080
age features with spatial information through the graph, ob-081
taining completed features for all regions. Next, we further082
enhance the features with the accumulated historical fea-083
tures of each Gaussian. The feature on each Gaussian will084
be updated using a visibility-aware fusion method, and the085
updated feature will be used in future frames. Finally, with086
the aggregated feature, we employ a multi-layer perceptron087
(MLP) to predict the color of each Gaussian. With the es-088
timated color, we can render photorealistic and temporally089
coherent free-viewpoint videos.090

We conducted extensive experiments on the ZJU-091
MoCap[38, 39], Human3.6M[17] and THUman4.0[62]092
datasets. The proposed FlyHuman outperforms existing093
approaches in terms of rendering quality, temporal consis-094
tency, and efficiency. Moreover, our method achieves real-095
time speed of 25 frames per second on an NVIDIA RTX096
4090 GPU, which is approximately 50 times faster than pre-097
vious state-of-the-art methods.098

In summary, this work makes the following contribu-099
tions:100

• We introduce a novel method for rendering free-101
viewpoint videos of dynamic human bodies in real-time102
from sparse views, achieving state-of-the-art performance103
in both quality and efficiency, as demonstrated by our ex-104
periments.105

• We propose a spatial-temporal feature aggregation106
(STFA) method that effectively incorporates image fea-107
tures from different body regions and time steps, thereby108
ensuring consistent rendering of occluded regions.109

• We combine graph-based deformation and linear blend110
skinning for real-time on-the-fly dynamic 3D Gaussian111
tracking, further enhancing the accuracy and geometry112
consistency of our approach.113

2. Related Work114

2.1. Novel View Synthesis115

Novel view synthesis has been an active area of research116
for a long time, with various approaches proposed, such as117
light fields [1, 5, 12, 18, 23, 45], image-based rendering118
[2–4, 10, 44, 54, 63] and multi-plane images [32, 64]. In119
recent years, neural representations have been extensively120
utilized in 3D scene representation, demonstrating their ef-121
fectiveness in modeling complex scenes and leading to a122
new trend for novel view synthesis. Neural Radiance Fields123
(NeRF) [33] has achieved significant success in photoreal-124
istic rendering of novel views. However, NeRF requires125
time-consuming per-scene optimization and cannot easily126

generalize to novel scenes. To address the generalization 127
limitation, several approaches have been proposed. Pixel- 128
NeRF [57] and IBRNet [47] condition NeRF with pixel- 129
aligned image features from nearby views and learn scene 130
priors from large datasets, enabling NeRF to generalize to 131
novel scenes. MVSNeRF [6] and ENeRF [27] further in- 132
volve cost volumes to investigate the correlation between 133
multi-view features, enhancing the robustness of NeRF. 134

2.2. Neural Radiance Fields for Human Body 135

Although Neural Radiance Fields (NeRF) [33] enables pho- 136
torealistic rendering of static scenes, it does not inherently 137
support dynamic human bodies. To address this limita- 138
tion, numerous efforts [25, 37, 38, 48, 51] have integrated 139
NeRF with parametric human models, such as SMPL[29], 140
to model the motion of dynamic humans. These meth- 141
ods achieve novel view synthesis of dynamic human using 142
sparse videos, but they typically require per-subject opti- 143
mization and cannot generalize to unseen subjects. To fur- 144
ther improve the rendering quality, recent works [28, 42, 55] 145
leverage captured images to provide more details, but these 146
methods require dense input views, and pre-scaned models 147
[42] or offline geometry fitting [28, 55], making them also 148
not generalizable to unseen subjects. 149

For generalizable novel view synthesis of human bod- 150
ies, various methods have been developed. NHP [21], Hu- 151
manNeRF [60], MPS-NeRF [11] and GM-NeRF [7] project 152
image features onto the SMPL model and diffuse the fea- 153
tures for volume rendering. KeypointNeRF[31] leverages 154
embedding based on 3D skeleton points to model the spatial 155
information of human bodies. TransHuman [35] employs a 156
transformer structure to model global relationships of fea- 157
tures on the human body. SHERF [15] incorporates hierar- 158
chical features to achieve body reconstruction from a single 159
image. However, these NeRF-based approaches typically 160
suffer from inefficient rendering due to the computationally 161
expensive ray marching process, which can lead to signif- 162
icant latency and hinder real-time applications. Moreover, 163
existing methods for generalizable dynamic human render- 164
ing often neglect the temporal information inherent in in- 165
put video sequences, processing each frame in isolation. 166
This oversight can result in suboptimal rendering quality 167
and a lack of temporal coherence. In contrast, our method 168
achieves real-time rendering of unseen subjects while ex- 169
plicitly considering the temporal information present in the 170
input video sequences, thereby enabling the generation of 171
high-fidelity, temporally coherent dynamic human videos. 172

2.3. 3D Gaussian Splatting 173

Recently, 3D Gaussian Splatting (3DGS) [19] introduced 174
a differentiable Gaussian ellipsoids splatting algorithm, 175
which achieved notable advancements in accelerating ren- 176
dering compared to ray marching-based methods like NeRF. 177
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Figure 1. The pipeline of our method. Starting from the 3D Gaussians in the canonical space, we apply a graph-based deformation to model
the non-rigid motions, and then deform the Gaussians into the observation space using linear blend skinning (LBS). The deformation is
optimized on-the-fly to align with the input data (Sec. 3.1). For appearance modeling, we first project each Gaussian onto the input image
planes and obtain the corresponding image features. Subsequently, we employ our Spatial-Temporal Feature Aggregation (STFA) method
to enhance the image features. STFA is achieved through a Graph Convolutional Network (GCN) to incorporate spatial information, and
a temporal aggregation method to incorporate historical features. Finally, with the aggregated feature, we use a multi-layer perceptron
(MLP) to predict the color of each Gaussian, and render the human body from the target viewpoint (Sec. 3.2).

Numerous follow-up works have emerged, extending 3DGS178
to dynamic scenes[30, 46, 53, 56] and dynamic human179
bodies[14, 16, 22, 26, 36, 40, 41, 50], but per-subject of-180
fline training if still needed. Different from them, GPS-181
Gaussian[61] leverages pixel-wise 3DGS for generalizable182
rendering of human bodies based on stereo-matching be-183
tween nearby views. However, the view interpolation of184
GPS-Gaussian requires relatively dense input views, lim-185
iting its applicability in scenarios with sparse viewpoints.186
Our method also builds upon 3DGS for efficient render-187
ing and achieves real-time novel view synthesis with only188
sparse input views.189

3. Method190

Given sparse videos of a dynamic human, our goal is to191
generate a free-viewpoint video of the dynamic human on-192
the-fly as the video streams in real-time. In addition to the193
videos, our system also utilizes the foreground mask and194
the estimated body pose as input. The first challenge of this195
task is to reconstruct a temporally consistent geometry in196
real-time. To address this, we propose to combine graph-197
based deformation and linear blend skinning to model the198
dynamic body motion, and track the body deformation on-199
the-fly (Sec. 3.1). With the tracked geometry, we then pre-200
dict the appearance of each 3D Gaussian from the input im-201
ages. However, the observation from sparse inputs is insuf-202

ficient to predict a complete and high-quality appearance. 203
To overcome this limitation, we propose a Spatial-Temporal 204
Feature Aggregation (STFA) method (Sec. 3.2) to enhance 205
the input image features. The pipeline of our method is il- 206
lustrated in Fig. 1. 207

3.1. On-the-fly Body Deformation Optimization 208

Body Representation. We employ 3D Gaussians Splatting 209
[19] as the representation for human bodies. In this repre- 210
sentation, bodies are explicitly constructed with point prim- 211
itives, where each 3D Gaussian is parameterized by a 3D 212
mean µ ∈ R3, a 3D rotation R ∈ SO(3), a scaling vector 213
s ∈ R3

+ and an opacity factor η ∈ (0, 1]. We then project 214
each 3D Gaussian onto the image plane using the ellipti- 215
cal Gaussian projection method proposed in EWA volume 216
splatting [65], and perform point-based alpha-blend for ren- 217
dering as: 218

C =
∑
i∈N

ciαiΠ
i−1
j=1(1− αj) (1) 219

where ci and αi is the color and density of each point. Be- 220
sides, we employ filters proposed in Mip-Splatting [58] to 221
avoid alias. 222

In our approach, we first construct a body mesh in the 223
canonical space and associate a 3D Gaussian with each ver- 224
tex of the mesh. The mesh comprises approximately 115k 225
points, which are evenly distributed across the body sur- 226
face. To simplify the problem, we fix the 3D rotation R 227
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to an identity matrix, the opacity factor η to 1. The scal-228
ing vector s of each Gaussian is set based on its distance229
d between nearest neighbor as s = [0.75d, 0.75d, 0.75d],230
where the average distance between neighboring Gaussian231
is about 4mm. Our method then estimates the position µ232
and the color c of each Gaussian.233

Deformation Representation. For dynamic body de-234
formation, we decompose it into articulated rigid motion235
driven by bones and non-rigid deformation driven by a de-236
formation graph. Given the body pose, the rigid motion is237
computed using the linear blend skinning (LBS) algorithm238
[24] with bone transformations of the SMPL [29] model,239
which can model body motion at a coarse level. However,240
rigid LBS alone is insufficient to capture the intricate details241
of human motion. Therefore, we further apply non-rigid242
motion in the canonical space. To avoid potential geometric243
artifacts caused by directly optimizing the position of each244
3D Gaussian, we introduce a deformation graph to interpo-245
late the motion to the Gaussians, as illustrated in Fig. 1. The246
deformation graph is parameterized as G = {pi, ti}, where247
pi is the position of the ith graph node, and ti is the trans-248
lation of the node. The positions of the graph nodes are249
acquired by sub-sampling points from the canonical body250
mesh, and each node is connected to its neighboring nodes251
by edges. The translation tx of a point x in the canoni-252
cal space can be computed by convex combinations of the253
translations t of its neighboring graph nodes:254

tx =

∑J
j=1 wjtj∑J
j=1 wj

, wj = exp

(
−∥x− pj∥22

σ2

)
(2)255

where J is the number of neighboring nodes of point x, the256
combination weights wj are computed based on the distance257
between x and the node position pj , and σ is a constant set258
to 0.001. Overall, for a point x in the canonical space, its259
transformed position in the observation space is given by260
LBS(x + tx), where LBS(·) denotes the linear blend skin-261
ning operation.262

Deformation Optimization. Given the multi-view im-263
ages, foreground masks, and the body pose at time t, our264
goal at this stage is to optimize the translation of the graph265
nodes to align the deformed model with the input images266
and masks. This is achieved by optimizing the following267
loss function:268

L(G) = λcolorLcolor + λmaskLmask + λregLreg (3)269

where Lcolor and Lmask ensure that the rendered images and270
masks align with the inputs, the Lreg is the regularization271
term.272

Specifically, since the optimization is performed frame-273
by-frame, we use the optimized graph deformation and the274
estimated Gaussian color from the previous time step t− 1275
to deform and render the 3D Gaussians. With the rendered276

colors and masks, we employ an L2 loss to construct the 277
Lcolor and Lmask terms. To stabilize the optimization pro- 278
cess, we employ regularization based on the spatial and 279
temporal smoothness of the body deformation: 280

Lreg =λspat

G∑
i=1

J∑
j=1

||ti − tj ||22 +

λtemp

G∑
i=1

J∑
j=1

∣∣∣∣(ti − tj)−
(
ttemp
i − ttemp

j

)∣∣∣∣2
2

(4) 281

where G and J are the number of graph nodes and the num- 282
ber of neighbors for each node, and ttemp

i is a temporally ex- 283
ponentially smoothed translation of the ith node. The first 284
part of the regularization term enforces spatial smoothness 285
between neighboring nodes, while the second part prevents 286
the relative translations of neighboring nodes from drastic 287
changes over time. With the defined loss function L(G), 288
we iteratively optimize the deformation using a gradient de- 289
scent algorithm, allowing for efficient and accurate tracking 290
of the dynamic human body geometry. 291

3.2. Appearance Prediction with Spatial-Temporal 292
Feature Aggregation 293

Overview. With the optimized geometry, we then pre- 294
dict the color of each Gaussian for free-viewpoint render- 295
ing. Similar to existing image-based rendering methods 296
[35, 47, 57], for a point x in the observation space, we first 297
project it onto the input image planes and obtain the pixel- 298
aligned multi-view image features encoded by a pretrained 299
CNN. These image features are then leveraged to predict the 300
color of the point. However, since the input views are lim- 301
ited, the point x may not be visible in the input images, lead- 302
ing to incomplete or inaccurate color information. To ad- 303
dress this challenge, we propose a spatial-temporal feature 304
aggregation (STFA) method to refine the features, enhanc- 305
ing the color prediction for occluded or poorly observed re- 306
gions. Finally, we train a multi-layer perceptron (MLP) to 307
predict the color of each Gaussian from the refined features 308
obtained through the STFA module. 309

Multi-view Feature Aggregation. We aggregate all the 310
visible image features from multiple views by: 311

fvis =

V∑
i=1

wif
i
img(x) (5) 312

where fiimg(x) is the image feature of point x in the ith view, 313
V is the number of input views, and wi is the weight of 314
the ith view computed based on its visibility. The visibility 315
weight wi is computed based on the viewing angle and an 316
occlusion check: 317

wi = wangle · wdist (6) 318
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319

wangle =

{
1− | sin ⟨−nx, vi(x)⟩ |, if nx · vi(x) < 0

0, if nx · vi(x) ≥ 0

(7)320321

wdist = max(1− k · di(x), 0) (8)322

where nx is the normal of point x in the observation space,323
vi(x) is the viewing direction from the ith camera to point324
x, and di(x) is the distance between the projected pixel325
point and point x. Instead of using the projected depth326
for distance computation, we render the canonical position327
map (similar to the observation point cloud in the green328
part of Fig. 1) and compute the distance in the canoni-329
cal space to avoid incorrect projections between different330
body parts. The constant k is set to 20, so if the distance331
is larger than 0.05m, the point x is considered occluded.332
Besides, if

∑V
i=1 wi > 1, we normalize the weights as333

wi = wi/
(∑V

i=1 wi

)
. We denote the total weight of in-334

put views as wvis =
∑V

i=1 wi.335

GCN-based Spatial Aggregation. However, due to the336
limited observation, there could be regions invisible to all337
input views. To handle this problem, we propose to use spa-338
tial information to inpaint the occluded regions. We lever-339
age the graph structure used in non-rigid deformation to340
propagate information on the body surface. For each graph341
node, the feature is computed using the feature from neigh-342
boring Gaussians. In addition to the image features, we also343
use the positional encoding of the coordinates of Gaussians344
in the canonical space and the visibility weight wvis as input345
features. Then, we employ a graph convolutional network346
(GCN) to propagate spatial information among neighboring347
graph nodes through the edges. The basic graph convolu-348
tion block in our GCN is the graph transformer proposed349
by [43]. Next, we upsample the features from graph nodes350
back to Gaussians and concatenate the GCN features with351
the original image features. We then use a linear layer to352
map the concatenated feature to the same dimension as the353
input image features, obtaining the inpainted feature fgcn.354
Finally, we combine the inpainted feature with the visible355
image feature fvis to obtain the feature for the current frame356
fcurr:357

fcurr = (1− wvis)fgcn + fvis (9)358

Visibility-aware Temporal Fusion. Even with the ag-359
gregated features, predicting high-quality appearance using360
only images from a single time step remains challenging.361
Therefore, we propose a visibility-aware temporal fusion362
method and leverage historical features to further refine the363
features. The historical feature is accumulated over time us-364
ing a visibility-aware fusion method. Given the feature ftcurr365
at time step t and the historical accumulated feature ft−1

acc ,366

the accumulated feature is updated as: 367

ftacc = (wt−1
acc ft−1

acc + wt
currf

t
curr)/(w

t−1
acc + wt

curr)

wt
acc = min(wt−1

acc + wt
curr, wmax)

(10) 368

where wt
curr is the weight for ftcurr, w

t
acc is the accumulated 369

weight at time t, at the first frame f0acc = 0, and wmax = 8 370
is the maximum accumulated weight. To maintain the qual- 371
ity of the accumulated feature, we only fuse well-observed 372
features into it. Therefore, we use a visibility-aware weight 373
wcurr = wvis, which considers the viewing angle and occlu- 374
sion. 375

Appearance Prediction. After the fusion of the accu- 376
mulated feature, we combine the historical feature with the 377
observation at the current time step to predict the color of 378
each Gaussian. Firstly, when the historical information is 379
insufficient, we rely more on the current observation. Ad- 380
ditionally, for well-observed regions, we also place greater 381
emphasis on the current observation, ensuring that the ren- 382
dered appearance accurately reflects the most recent input. 383
Here, we use the distance d(x) to define the quality of cur- 384
rent observation, which is similar to Eq. 8, and we use an 385
exponential function to smoothly combine the features. The 386
combination is computed as: 387

w = (wt
acc/wmax)(1− exp(−k · d(x))) (11) 388

389
ffinal = wftacc + (1− w)ftcurr (12) 390

With the feature ffinal, we employ an MLP to predict the 391
color of each Gaussian for rendering. 392

Network Training. The appearance prediction relies on 393
three neural networks: the CNN for image feature encod- 394
ing, the GCN for spatial feature aggregation, and the MLP 395
to predict the color. We train our models on the ZJU-MoCap 396
dataset[38, 39], which contains multi-view videos of dy- 397
namic humans. During training, we randomly sample three 398
views as input and a random target view. We supervise the 399
rendered image to be close to the target image using MSE 400
loss and LPIPS loss [59]: 401

L = LMSE + λLLPIPS (13) 402

where we set λ = 0.01. During the training process, we 403
drop the temporal feature fusion block, and the color pre- 404
diction MLP takes only fcurr as input. This simplification 405
allows us to train the networks in a more efficient and stable 406
manner. These three networks are trained end-to-end. 407

4. Experiments 408

In this section, we first provide implementation details of 409
the proposed method (Sec. 4.1). Then, we introduce the 410
datasets and evaluation metrics used (Sec. 4.2). Next, we 411
compare our method with existing approaches, both quan- 412
titatively and qualitatively (Sec. 4.3). Finally, we perform 413
ablation studies to validate our key designs (Sec. 4.4). For 414
sequence results, please refer to our supplemental video. 415
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Method ZJU-MoCap (3 views) ZJU-MoCap (single view) Human3.6M (3 views) THUman4.0 (3 views) FPSPSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
KeypointNeRF 25.82 0.9100 0.1024 24.11 0.8857 0.1359 21.94 0.8590 0.1847 23.57 0.9128 0.1071 0.13
TransHuman 26.85 0.9143 0.1078 25.31 0.8938 0.1369 24.44 0.8830 0.1559 24.49 0.9152 0.1110 0.55

Ours 26.68 0.9148 0.0934 25.42 0.9026 0.1125 25.02 0.9072 0.1289 25.24 0.9313 0.0889 25

Table 1. Comparisons with KeypointNeRF[31] and TransHuman[35]. Note that we use the refined version of the ZJU-MoCap dataset in
[39] with more accurate annotations, which makes the results slightly different from their original papers.

Figure 2. Comparisons with KeypointNeRF[31] and TransHuman[35] on the ZJU-MoCap dataset. For the results in the left part, three
input views were used, while for the results in the right part, only a monocular video was used as input.

4.1. Implementation Details416

In the graph-based deformation module, the graph contains417
1620 nodes, and each node is connected to 4 neighbor-418
ing nodes. The optimization weights are set as follows:419
λcolor = λmask = 2, λreg = 200, λspat = 1, and λtemp = 2.420
The iterations of gradient descent is 10 for the first 10421
frames and 2 for later frames. For the appearance predic-422
tion component, the networks are trained using the Adam423
[20] optimizer with a learning rate of 1e-4. The models are424
trained for 25,000 iterations. The CNN network is initial-425
ized with pretrained weights from ResNet-18[13], and we426
only use the first three layers for feature extraction. The in-427
ference speed of our method is 25 frames per second (FPS)428
for images of 512×512 resolution with 3 input views on an429
NVIDIA RTX 4090 GPU. For monocular input, the speed430
further increases to 53 FPS, since the time for feature ex-431
traction and projection is significantly reduced. More de-432
tails about the network architectures, configurations, and in-433
ference speed can be found in the supplemental document.434

4.2. Datasets and Metrics435

We use the ZJU-MoCap dataset [38, 39] to train our model.436
The ZJU-MoCap dataset contains videos of 9 different sub-437
jects captured by 23 synchronized cameras. We use 6 sub-438
jects for training and the remaining 3 for evaluation. During439
testing, we use either 3 views or a monocular video as in-440

put and evaluate on 6 novel views. To further evaluate the 441
cross-dataset generalization ability of our method, we use 442
the Human3.6M[17] and THUman4.0[62] dataset. The Hu- 443
man3.6M dataset contains 7 subjects captured by 4 cameras, 444
with 3 views as inputs and 1 for testing. The THUman4.0 445
dataset contains 3 subjects captured by 24 cameras, we use 446
3 views as inputs and another 3 views for testing. More 447
details on the datasets can be found in Sec. 8 of the supple- 448
mental document. 449

To evaluate rendering quality, we employ PSNR, SSIM 450
[49], and LPIPS [59] as metrics. These metrics are com- 451
puted within the foreground regions determined by the 452
bounding box of the humans in the scene. 453

4.3. Comparisons 454

We first compare our method with two generalizable sparse- 455
view based human rendering methods, KeypointNeRF[31] 456
and TransHuman[35]. These two methods process each 457
frame in the videos independently, without considering tem- 458
poral information like our approach. The comparison is 459
conducted on four different settings: using three or single 460
input views on the ZJU-MoCap dataset, and cross-dataset 461
evaluation on the Human3.6M and THUman4.0 dataset 462
with three input views. We present the numerical results 463
in Tab 1. Overall, our method achieves better performance 464
than KeypointNeRF and TransHuman across all settings. 465
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Figure 3. Comparisons with KeypointNeRF[31] and
TransHuman[35] on the THUman4.0 (first row) and the Hu-
man3.6M dataset (second row).

Moreover, our method achieves real-time frame rates of466
25FPS, while the other two methods take seconds to ren-467
der a single image.468

We further show qualitative comparisons on the ZJU-469
MoCap dataset in Fig. 2. On the ZJU-MoCap dataset with470
three input views, the results are mostly plausible for all471
three methods. However, for occluded regions, we can472
observe incorrect appearance projections in the results of473
TransHuman and KeypointNeRF. For example, the appear-474
ance of the arm and fist is projected onto the chest in the475
results in the top row of the left half in Fig. 2. Our ap-476
proach does not suffer from these artifacts since we filter477
out invisible image features and leverage spatial-temporal478
information to predict the appearance of occluded regions.479
Additionally, we can find that the geometry of the arm and480
body are blended in the results of TransHuman and Key-481
pointNeRF in the bottom row, while our method provides482
a clear geometry, as the geometry is well-tracked over time483
with the on-the-fly graph deformation optimization.484

When the input is reduced to a single view, novel view485
synthesis becomes much more challenging, especially when486
the target view differs significantly from the input view (the487
top row of the right half of Fig. 2). However, with the ac-488
cumulated temporal features, our method can still generate489
plausible results based on historical observations. When the490
target view is not far from the input view (results in the bot-491
tom row), TransHuman and KeypointNeRF still suffer from492
occlusions, while our approach achieves better results with493
the spatial-temporal feature aggregation module.494

Furthermore, in the cross-dataset evaluation on the Hu-495
man3.6M and THUman4.0 dataset shown in Fig. 3. In the496
results of TransHuman and KeypointNeRF, we can observe497
incorrect appearance caused by occlusion. Besides, floaters498
appear in the geometry of TransHuman, whereas body cor-499
ruption appears in the geometry of KeypointNeRF. In con-500

Figure 4. Comparisons with GPS-Gaussian[61] and ENeRF[27].
Note that GPS-Gaussian and ENeRF use 11 input views, while our
method only uses 3 input views (in red rectangles).

trast, our method achieves best results even for challenging 501
body poses (the second row of Fig. 3), demonstrating its ro- 502
bust capability for generalization across poses and datasets. 503

Next, we compare our method with two real-time 504
generalizable rendering methods, ENeRF[27] and GPS- 505
Gaussian[61]. However, these two methods rely on rel- 506
atively dense input views, so we use 11 input views for 507
their methods and 3 views for ours for comparison. We 508
render novel view images and show qualitative compar- 509
isons in Fig. 4. We can find that our method achieves 510
consistent novel view synthesis results, while ENeRF and 511
GPS-Gaussian exhibit jitters or broken geometry in their re- 512
sults. This is because ENeRF and GPS-Gaussian use nearby 513
views for depth estimation, and when the discrepancy be- 514
tween nearby views becomes large due to the sparsity of 515
input views, it becomes challenging to generate plausible 516
results like ours. Additionally, when shifting between dif- 517
ferent nearby views, there could be jitters in their results. In 518
contrast, the geometry of our method is view-independent 519
and tracked over time with spatial and temporal smooth- 520
ness, providing stable results. 521

For more comparisons, please refer to Sec. 9 of the sup- 522
plemental document and the supplemental video. 523

4.4. Ablation Study 524

We evaluate two key components of our technique: the 525
graph-based deformation optimization and the spatial- 526
temporal feature aggregation module. 527
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Figure 5. Ablation study on the graph-based deformation. We see
that without the graph-based deformation, the body shapes do not
match the ground truth.

Method ZJU-MoCap (3 views) ZJU-MoCap (single view)
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

w/o ST 26.17 0.9095 0.0962 24.18 0.8883 0.1207
w/o T 26.58 0.9145 0.0935 25.18 0.9001 0.1165
Ours 26.68 0.9148 0.0934 25.42 0.9026 0.1125

Table 2. Ablation study on the spatial-temporal feature aggrega-
tion. ”w/o ST” means using only original image feature without
spatial-temporal aggregation, ”w/o T” means using only spatial
aggregation and no temporal information used.

Graph-based Deformation. To evaluate the importance528
of the on-the-fly geometry optimization, we remove the op-529
timization of graph nodes and use only the initial geometry530
model and linear blend skinning (LBS) for geometry track-531
ing. The comparative results are shown in Fig. 5. We can532
observe that the result without graph deformation cannot fit533
the body shape well and cannot model the shape of hat and534
shoes in the rightmost column, leading to incorrect appear-535
ance projections.536

Spatial-Temporal Feature Aggregation. To evaluate537
the effectiveness of the spatial and temporal feature aggre-538
gation module, we build a baseline method that only uses539
the original image features to predict the appearance. The540
image features are computed using Eq. 5, and to avoid the541
features of occluded regions from being zeros, we add a542
small number to the weight of each view and normalize543
the weights. Based on this baseline, we incrementally add544
the spatial and temporal aggregation steps. The quantita-545
tive results on the ZJU-MoCap dataset are shown in Tab. 2.546
We can observe that both spatial and temporal aggrega-547
tion bring improvements to the results. Moreover, for the548
single-view scenario, the improvement becomes more sig-549
nificant because the visible information is fewer, and our550
spatial-temporal feature aggregation plays a more crucial551
role. Qualitative results are shown in Fig. 6. We can see552
that with only the original image features, it is challenging553
to obtain plausible appearance for occluded regions. In the554
result of ”w/o ST” the appearance of the occluded regions555
is simply the incorrect projection of visible parts. With our556
spatial aggregation module involved, the results of ”w/o T”557
can inpaint the features of occluded regions with spatial pri-558

Figure 6. Ablation study on the spatial-temporal feature aggrega-
tion. ”w/o ST” means using only original image feature without
spatial-temporal aggregation, ”w/o T” means using only spatial
aggregation and no temporal information used.

ors, providing much better rendering results. However, us- 559
ing only observations from a single time step, it is still dif- 560
ficult to provide high-quality results, especially for monoc- 561
ular input. By further leveraging the accumulated historical 562
information, our method achieves the best results, demon- 563
strating the importance of both spatial and temporal feature 564
aggregation. 565

5. Conclusion 566

In this work, we propose FlyHuman, a novel approach for 567
on-the-fly real-time free-viewpoint video synthesis of dy- 568
namic humans from sparse viewpoints. Our method com- 569
bines graph-based deformation with LBS to enable real- 570
time tracking of dynamic body motions with temporal con- 571
sistency. Furthermore, our method introduces a spatial- 572
temporal feature aggregation module to enhance the lim- 573
ited sparse-view observations with spatial priors and his- 574
torical information, achieving high-fidelity appearance es- 575
timation. In summary, this work paves a step forward in 576
free-viewpoint video, making applications such as real-time 577
telepresence, virtual events possible with low-cost devices. 578
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